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A New Statistical Approach to Project Scheduling 

R. L. Sielken, Jr. and H. 0. Hartley 



Abstract 

This paper describes a comprehensive new procedure for determining 

a minimum cost project schedule when the activities making up the project 

have durations which are random variables.  The cost of an activity is 

assumed to be a convex piecewise linear function of the activity's mean 

duration.  The objective is to determine the activity mean durations which 

both minimize the total project cost and insure that the mean of the 

corresponding project completion time distribution is less than or equal 

to a specified project deadline.  The entire distribution of the project's 

completion time under the minimum cost schedule is a valuable by-product. 

This paper represents a relatively non-mathematical overview of the 

project scheduling procedure developed in six technical reports prepared 

under a research contract for the Office of Naval Research. A computer 

implementation of the procedure may be obtained from Dr. R. L. Sielken, Jr., 

Institute of Statistics, Texas A&M University, College Station, Texas 77843. 
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1.  The Project Scheduling Problem 

A project is composed of several "tasks" or "activities." These 

activities can be represented by arcs in a directed network.  For example, 

a small project might consist of activities A, B, C, D, and E with the 

following precedence relationships: 

(i)  A must be completed before either C or D can be begun; 

(ii)  B must be completed before D can be begun; and 

(iii)  C and D must both be completed before E can be begun. 

The corresponding network representation is shown in Figure 1.  The arc 

labeled F does not correspond to any "real" activity but is a "dummy" 

activity merely representing the precedence relation that A must be 

completed before D can be begun.  The points numbered 1, 2, ..., 5 are 

called nodes.  In the network representation of a project the activities 

originating at a node can be begun only after all activities terminating 

at that node have been completed. 

The time that it actually takes to complete an activity once that 

activity has been begun is called the activity's duration and is a random 

variable.  The cost of an activity is assumed to be a convex piecewise 

linear function of the activity's mean duration time.  An example of an 

activity's cost curve is given in Figure 2.  In this example TIME(l) is 

the minimum mean duration time that can be scheduled.  TIME(4) is the 

cheapest mean duration and hence the maximum mean duration that would be 

scheduled.  Of course a linear cost curve is the simplest convex piecewise 

linear cost function.  The more general piecewise behavior, however, 

frequently arises if there are alternative methods of performing an 

activity.  These methods do not differ in the end result but do differ in 
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the amount of time they take and their cost.  For example, to have a mean 

duration in the interval [TIME(l), TIME(2)] might require the use of a 

very expensive piece of special equipment while having a mean duration in 

the interval [TIME(2), TIME(3)] requires only specially trained personnel 

and having a mean duration in the interval [TIME(3), TIME(4)] just requires 

varying amounts of standard resources.  The form of the activity duration 

distribution may vary from one time interval to another.  For example, the 

activity duration distribution might be a beta distribution when the mean 

duration is in [TIME(l), TIME(3)] and approximately a normal distribution 

when the mean duration is in [TIME(3), TIME(4)]. 

A project schedule is a specification of each activity's mean duration. 

The total project cost is simply the sum of the corresponding activity costs, 

The time to complete the entire project is a random variable whose distri- 

bution depends upon the activity duration distributions.  The objective is 

to determine a minimum cost project schedule such that the mean of the 

corresponding project completion time distribution is less than or equal 

to a specified project deadline. 
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Figure 1.  A Small Project Represented as a Directed Network 
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Figure 2.  An Activity's Cost as a Function of the Activity's Mean Duration 
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2.  Determining a Project's Completion Time Distribution 

Even when each activity's duration distribution is specified, the 

determination of the project completion time distribution is in general 

very difficult.  The classical approach to the simpler problem of estimating 

just the mean project completion time is to replace each activity's random 

duration by its mean duration and then let the corresponding project 

completion time be the estimate of the project's mean completion time. 

Unfortunately, this estimate is always less than or equal to the project's 

mean completion time and can often cause the project manager to greatly 

underestimate the project's mean completion time.  For example, suppose 

that the project is made up of just n independent activities in parallel, 

say Yj, Y2, ..., Y , and that an activity Y has duration 0 with probability 

1 - 1/2 and duration 1 with probability 1/2 ,  Then each Y has mean 1/2 

and the classical estimate of the project's mean completion time is 1/2 . 

However, since the project's completion time is the maximum of Y-^, Y2, ..., Y , 

the project's mean completion is really 1 - (1 - 1/2 ) .  Thus, if m = 4 

and n = 10, the classical estimate is only 13% of project's mean completion 

time.  Furthermore, as m and n increase the percentage decreases to zero. 

In Figure 1 there are really three paths through that network; namely, 

?! = A + C + E, 

P2=A+F + D + E, 

P3 = B + D + E. 

The project completion time is the maximum of Pj, P2, and P3.  The classical 

approach to estimating the project completion time distribution is to 

determine the maximum path when the random activity durations A, B, ..., F 

are each replaced by their mean durations and then let the estimate be this 
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particular path's completion time distribution or an approximation thereof. 

Since this particular path may not be the maximum path for all values of 

A, B, ..., F, the classical approach overestimates the project completion 

time distribution.  The extent of the overestimation can be illustrated by 

again considering a project network made up of just n independent activities 

in parallel.  If G(t) is the duration distribution of each activity duration, 

then the classical estimate of the project completion time distribution 

would also be G(t) whereas the actual distribution is [G(t)] . Hence, if 

there were n = 4 activities and the probability that a particular activity's 

duration is less than or equal to t = 10 was 0.8 so that 0(10) =0.8, the 

classical estimate of the probability that the entire project would be 

completed by t = 10 would be 0.8 whereas the actual probability would only 

be (O.S)4 = 0.4096 - a considerable difference. 

From a statistical viewpoint the project completion time is defined 

easily enough as the maximum of the paths. However, the difficulty is that 

the paths are not independent since the paths often have activities in common. 

For example, the paths ?i  and P2 have activities A and E in common.  Theo- 

retical results on behavior of the maximum of dependent random variables 

are very limited, but research in this area is continuing. Another 

difficulty is that the number of paths generally increases drastically as 

the number of activities increases.  For example, there are only three 

paths from the six activities in Figure 1, but there are 69 paths from the 

18 activities in Figure 6. 
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3.  Synopsis of a New Project Scheduling Algorithm 

In 1974 the development of a new project scheduling procedure was 

begun with the support of the Office of Naval Research.  A detailed docu- 

mentation of that development is contained in the six technical reports 

listed in the references.  The new project scheduling procedure is an 

iterative algorithm involving the following five general steps: 

Step 1.  Deterministic Scheduling:  Find a minimum cost project 

schedule which completes the project by TARGET TIME when 

each activity's duration is exactly its mean duration and 

hence deterministic instead of random.  (The initial value 

of TARGET TIME is usually the specified project deadline.) 

Step 2.  Simplification:  Let each activity's duration be a random 

variable with distribution corresponding to that activity's 

mean duration chosen during Deterministic Scheduling. 

Replace various configurations of activities by single 

activities.  The duration distribution for a replacement 

activity is the distribution of the time to complete all 

of the activities in the configuration it is replacing. 

The result of this step is a simplified project network 

with fewer activities. 

Step 3.  Decomposition:  Partition the simplified project network 

into several subnetworks in such a way that the resultant 

subnetworks can be linked together in either series or 

parallel to form the simplified project network. 

Step 4.  Subnetwork Analysis:  Analyze separately each of the sub- 

networks determined during Decomposition.  Within a subnetwork 
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each activity's duration distribution is approximated by a 

two-point discrete distribution with matching mean, variance, 

and third moment.  Determine the subnetwork duration distri- 

bution corresponding to these discrete activity duration 

distributions. 

Step 5.  Synthesis:  Combine the approximate subnetwork duration 

distributions to obtain an approximate completion time 

distribution for the entire project.  If the mean, T, of 

this project completion time distribution is sufficiently 

close to the specified project deadline, the "optimal" 

project schedule has been found.  Otherwise, reset TARGET 

TIME to 

New TARGET TIME = Old TARGET TIME*(Project Deadline/T) 

and return to Step 1. 

These five general steps are discussed in more detail in Sections 

4, ..., 8 respectively.  Section 9 contains a complete example of the 

iterative algorithm's performance. 
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4.  Deterministic Scheduling 

The problem of finding a minimum cost project schedule which conpletes 

the project by TARGET TIME when each activity's duration is exactly its 

mean duration can be formulated as a linear programming problem.  However, 

due to the large number of variables and constraints involved, a straight- 

forward linear programming solution would be impractical.  Instead the dual 

of this linear programming problem is considered, further reformulated, and 

then solved using the very efficient network-flow algorithm described in 

Dunn and Sielken [1977].  This network-flow algorithm is a generalization 

of D. R. Fulkerson's algorithm [1961] for solving similar problems with 

linear activity cost functions.  The generalized network-flow algorithm 

iteratively generates the minimum cost project schedule for every feasible 

deterministic completion deadline.  The corresponding deterministic project 

cost curve is a convex piecewise linear function of TARGET TIME and a 

valuable description of the relationship between a project's cost and its 

deadline.  The optimal activity mean durations are linear functions of the 

TARGET TIME on each linear piece of the project cost curve. 

Since the deterministic project scheduler iteratively generates the 

optimal activity mean durations for all feasible completion deadlines. 

Step 1 is essentially only performed once.  When the general iterative 

algorithm returns to Step 1 with a new TARGET TIME, finding the optimal 

activity mean durations is essentially a simple table look-up procedure. 

For a more complete detailed discussion of Deterministic Scheduling see 

Dunn and Sielken [1977]. 
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5.  Simplification 

Five configurations of activities for which a single equivalent activity 

and duration distribution are readily available are depicted in Figure 3. 

The equivalent single activity duration distributions for the parallel, series, 

and Wheatstone Bridge configurations were originally identified by Hartley 

and Wortham [1966] and for the Double Wheatstone Bridge and Criss-Cross 

configurations by Ringer [1969]. 

Simplification is an iterative procedure as illustrated in Figure 4. 

In the special case where Simplification reduces the project network down 

to just one activity as in Figure 4, the project completion time distribution 

is directly determined so that Steps 3 and 4 are skipped.  Although a re- 

duction to one activity is a very special case, reductions of over 50% are 

quite common. 

The structure of the simplified network is identified the first time 

Step 2 is performed.  In subsequent iterations only the distribution of the 

activity durations in the simplified network change. 
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Activities in 
Parallel 

ooo 

Two Activities in 
Series 

Wheatstone Bridge 

Double Wheatstone Bridges 

Criss - Crosses 

Figure 3.  Activity Configurations Which Can be Readily Replaced by a Single 
Equivalent Activity 
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Figure 4.  The Iterative Simplification of a Project Network 

Original Project Network 

Project Network After Activities in Series 
Replaced by Equivalent Single Activities 



Figure 4. (Continued) 
-13- 
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Project Network After Activities in Parallel and Activities in a 
Wheatstone Bridge Replaced by Equivalent Single Activities 

Project Network After Activities in Series 
Replaced by Equivalent Single Activities 

o- 
Simplified Project Network After Activities in a Double Wheatstone 

Bridge Replaced by an Equivalent Single Activity 
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6.  Decomposition 

The objective of Decomposition is to partition the simplified project 

network into the simplest possible subnetworks subject to the constraint 

that the subnetwork duration distributions can be easily combined to yield 

the project completion time distribution. 

The simplified project network can be suitably partitioned using the 

following iterative procedure.  First the simplified network is searched 

for subnetworks that begin at the beginning of the simplified network, end 

at the end of the simplified network, and are in parallel.  Each parallel 

subnetwork is then subdivided into a sequence of smaller subnetworks that 

are in series.  Each series subnetwork is then searched for parallel 

subnetworks.  The partitioning into parallel and series subnetworks con- 

tinues until no subnetwork can be further partitioned.  This iterative 

partitioning procedure is illustrated in Figure 5. 

As in Simplification this partitioning of the simplified project network 

into subnetworks could have also included subnetwork configurations of the 

Wheatstone Bridge, Double Wheatstone Bridge, and Criss-Cross forms; however, 

the apparent frequency of these subnetwork configurations does not seem to 

justify the additional programming effort. 

Since Steps 1 and 2 do not change the structure of the simplified 

project network and the partitioning of that network does not depend on the 

activity duration distributions. Decomposition is only done once and is really 

skipped when the general iterative algorithm returns to Step 3. 

Decomposition is documented in Sielken and Fisher [1976]. 
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Figure 5.  The Decomposition of a Simplified Project Network* 
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Simplified Project Network 
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Partitioning into Parallel Subnetworks 

*The arcs A*, M*, R*, and 5* each represent non-simplifiable subnetworks and 
not single activities.  Otherwise this "Simplified Project Network" could be 
further simplified. 
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Figure 5.  (Continued) 
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7.  Subnetwork Analysis 

In Step 4, Subnetwork Analysis, the objective is to approximate each 

subnetwork's duration distribution.  At the end of Step 2 each activity in 

the subnetwork has a specified duration distribution.  This distribution is 

now approximated by a two-point discrete distribution.  In particular, the 

activity is now conceptualized as having two possible duration times, say L 

for a lower duration and U for an upper duration.  The probability that the 

activity duration is L is assumed to be p, and correspondingly the probability 

that the activity duration is U is assumed to be 1 - p.  The values of L, U, 

and p are chosen so that the mean, variance, and third moment of the discrete 

distribution are the same as the mean, variance, and third moment of the 

activity's specified duration distribution.  The subnetwork's exact duration 

distribution is approximated by the subnetwork duration distribution when 

each activity has its two-point discrete duration distribution.- 

If each activity had a non-random duration, the subnetwork duration 

would be the duration of the longest path through the subnetwork.  The 

longest path is commonly referred to as the critical path and the activities 

on that path are called critical activities. 

To determine the subnetwork's approximate duration distribution, each 

activity duration is temporarily set equal to its mean duration, m = 

pL + (1 - p)U, and the critical path determined.  The activities on this 

original critical path are certainly some of the most important activities 

in determining the subnetwork duration distribution. Hence these original 

critical activities are the first activities put into a set called IMPORTANT. 

Some originally non-critical activities could become critical if the 

duration of an originally critical activity were decreased.  Hence one 
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originally critical activity has its duration decreased to m - As where 

s is the activity's standard deviation, s = [pL2 + (1 - p)U2 - m2] , and 

X is a positive algorithm parameter.  The new critical path is determined 

and each new critical activity not in IMPORTANT is added to IMPORTANT. 

This procedure is repeated for every originally critical activity. 

An originally non-critical activity could become critical if its actual 

duration was greater than its mean duration. Hence one originally non- 

critical activity has its duration set equal to m + es where 0 is an algorithm 

parameter while all other activities are assigned their mean durations.  The 

new critical path is determined and each new critical activity not in 

IMPORTANT is added to IMPORTANT.  This procedure is repeated for every 

originally non-critical activity. 

After the composition of IMPORTANT has been determined, a lower bound 

on the subnetwork's approximate duration distribution can be obtained by 

considering the activity durations for non-IMPORTANT activities at their U 

values and the activity durations for IMPORTANT activities at all possible 

combinations of their L and U values.  An upper bound on the subnetwork's 

approximate duration distribution can be determined by considering the 

activity durations for non-IMPORTANT activities at their L values and the 

activity durations for IMPORTANT activities at all possible combinations of 

their L and U values. 

Although the composition of IMPORTANT depends upon both A and 8, the 

most important parameter is 0.  In particular, for any fixed A, as 6 

increases the lower bound on the subnetwork's approximate duration distri- 

bution increases monotonically while the upper bound decreases monotonically. 

In fact, for any fixed A, there is a finite value of 9 such that the lower 
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bound and upper bound are exactly equal to the subnetwork's approximate 

duration distribution.  Since the computational effort in determining the 

upper and lower bounds increases as 6 increases, the most practical procedure 

Is actually to determine the upper and lower bounds for a few 6 values and 

then extrapolate to ascertain the subnetwork's approximate duration 

distribution. 

Computational experience with the Subnetwork Analysis procedure for 

approximating a subnetwork duration distribution has been highly satisfactory 

and a substantial improvement over classical approaches. At first glance, 

a Monte Carlo approach would appear to be equally satisfactory.  In fact, it 

would have been easier to prepare a computer implementation of the Monte 

Carlo approach than the Subnetwork Analysis procedure.  However, the Monte 

Carlo approach is less practical in the sense of computer execution time 

(cost) and theoretically less appealing since all activities are given equal 

consideration in the Monte Carlo approach whereas Subnetwork Analysis 

concentrates more heavily on the activities most likely to influence the 

subnetwork duration. 

The Subnetwork Analysis procedure was first developed in Arseven. 

Hartley, Ringer, and Sielken [1974] and then improved in Ringer, Sielken 

and Spoeri [1976].  The many details and proofs omitted in the above 

discussion are given in these two references. 
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8.  Synthesis 

The project's approximate completion time distribution can be determined 

by combining the approximate subnetwork duration distributions. When the 

project network is decomposed in Step 3, the result is a network of subnet- 

works with any two connected subnetworks being either in series or in 

parallel.  Let SUBj, and SUB2 be any two such subnetworks, and let the 

corresponding approximate subnetwork duration distributions be F^ and F2. 

If SUB^ and SUB2 are in series, then the approximate duration distribution 

for SUBi and SUB2 combined is 

F(t) = I  F2(t - s)f1(s) = I  FxCt - s)f2(s) (8.1) 
s<t s_< t 

where fj and £2 are the discrete probability density functions corresponding 

to Fj and F2 respectively.  If SV&i  and SUB2 are in parallel, then the 

approximate duration distribution for SUBj and SUB2 combined is 

F(t) = Fiit)   • F2(t). (8.2) 

By repeatly combining subnetworks that are connected either in series or in 

parallel, the project's approximate completion time distribution is obtained. 

Once the project's approximate completion time distribution has been 

determined, the project's approximate mean completion time, T, can be cal- 

culated and compared with the project deadline.  If the project manager 

feels that T is sufficiently close to the project deadline, say within 5%, 

then the project schedule just determined in Step 1 is considered "optimal." 

Otherwise, a new project schedule must be determined by returning to Step 1 

with a new TARGET TIME. 
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Step 1 only requires that the project would be completed by TARGET TIME 

if each activity's duration was exactly its mean duration.  On the other 

hand, T takes into consideration the random nature of an activity's duration 

and hence will generally exceed TARGET TIME.  The difficulty is in deciding 

how much less than the project deadline should TARGET TIME be in order that 

the corresponding T be sufficiently close to the project deadline.  The 

algorithm iteratively updates its estimate of this TARGET TIME by 

New TARGET TIME = Old TARGET TIME*(Project Deadline/T). 

The initial TARGET TIME would usually be the project deadline but could be 

chosen somewhat less than the project deadline.  A typical sequence of 

TARGET TIMEs and T's for a project deadline of 400 might be 

TARGET TIME = 400, T = 500, 

TARGET TIME =320, T = 360, 

TARGET TIME =356, T = 408. 

Since the algorithm approximates the project's entire completion time 

distribution for each tentative schedule determined in Step 1, the quantity 

T in the above discussion could just as easily be a specified percentile 

of the project completion time distribution.  For example, the project 

manager might wish a minimum cost project schedule such that the probability 

of the project being completed before the project deadline is .90.  In this 

case, the new TARGET TIMEs would be determined with T being the 90th percen- 

tile of the project's approximate completion time distribution instead of 

the project's approximate mean completion time. 
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Of course, each time Steps 1-5 are performed a new T, approximate 

project completion time distribution, and project cost are generated. 

This sequence of T's and project costs supplements the deterministic project 

cost curve in describing the impact of the project deadline on the project 

cost. 



-23- 

9.  An Example of the Project Scheduling Algorithm's Performance 

A small project network is depicted in Figure 6.  The relationship 

between each activity's mean duration and its cost is given in Table 1. 

The project scheduling algorithm also requires that the activity's duration 

distribution be specified at the midpoint of each time interval on the convex 

piecewise linear cost function, i.e., when the activity's mean duration is 

[TIME(l) + TIME(2)]/2, [TIME(2) + TIME(3)]/2, etc.  This information is also 

given in Table 1.  The algorithm assumes that if an activity's mean duration 

is not at the midpoint but at c times the midpoint and still in the same 

time interval, then the activity's duration distribution has the same form 

(Normal, Beta, Constant, etc.) but with a new variance equal to c  times 

the variance at the midpoint.  Thus, for example, if activity A's mean 

duration is 28, its cost is 34, and activity A's duration distribution is 

Beta [10,40] with mean 28 and variance (28/25)236. 

With a project deadline of 110 the algorithm's iterative determination 

of the minimum cost project schedule is as follows: 

Step 1.  Deterministic Scheduling:  The shortest feasible project 

completion time when each activity duration is its mean 

duration is found to be 90 by determining the longest path 

through the project network when each activity's duration is 

equal to its minimum mean duration, TIME(l).  Similarly, the 

longest such feasible project completion time is found to be 

135 by determining the longest path through the project 

network when each activity's duration is equal to its maximum 

mean duration.  The minimum cost schedule which complete the 

project by TARGET TIME when each activity's duration is its 

mean duration is determined for each value of TARGET TIME 

between 90 and 135.  The corresponding optimal activity 
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Figure 6. Example Project Network 
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Table 1,  Activity Costs and Duration Distributions 

Activity   Mean Durations   Cost Duration Distribution at Midpoint 

A TIMECI; 1 = 10 100 

TIME(2: = 15 70 

TIME(3; ) = 20 50 

TIME(4; = 30 30 

B TIME(I; = 8 60 

TIME(2; = 14 45 

C TIME(i: = 10 50 

D TIME(I; = 50 200 

TIME(2; 1 = 70 160 

E TIME(i: I = 32 45 

TIME(2; 1 = 40 40 

F TIME(I; ) = 20 64 

TIME(2; I = 32 48 

G TIMECI] ) = 13 30 

TIME(2; ) = 19 25 

H TIME(i: ) = 20 60 

TIME(2; ) = 30 50 

TIME(3; ) = 35 48 

I TIME(1 ) = 5 60 

J TIME(1 ) = 18 62 

TIME(2" ) = 26 49 

K TIME (I- ) = 10 40 

L TIME(1 ) = 6 75 

TIME(2 ) = 10 50 

Beta on [5,20] with mean 12.5 and variance 16 

Normal with mean 17.5 and variance 25 

Beta on [10,40] with mean 25 and variance 36 

Normal with mean 11 and variance 9 

Constant Duration = 10 

Normal with mean 60 and variance 100 

Normal with mean 36 and variance 18 

Beta on [10,50] with mean 26 and variance 70 

Normal with mean 16 and variance 7 

Normal with mean 25 and variance 12 

Normal with mean 49 and variance 9 

Constant Duration = 5 

Beta on [10,40] with mean 22 and variance 6 

Constant Duration = 10 

Normal with mean 8 and variance 5 
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Table 1. (Continued) 

Activity   Mean Durations   Cost Duration Distribution at Midpoint 

M 

N 

P 

Q 

TIME(l) = 36 225 

TIME(2) = 44 175 

TIME(l) = 30 400 

TIME(2) - 40 300 

TIME(l) = 60 250 

TIME(2) - 80 210 

TIME(l) ■1 4 52 

TIME(l) - 2 100 

TIME(2) =r 4 90 

TIME(l) = 4 110 

TIME(2) = 6 80 

Normal with mean 40 and variance 80 

Normal with mean 35 and variance 25 

Normal with mean 70 and variance 144 

Constant Duration = 4 

Beta on [1,6] with mean 3 and variance 1 

Normal with mean 5 and variance 2 
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mean durations are given in Table 2.  The project cost curve 

is depicted in Figure 7. 

The initial activity mean durations are those corresponding 

to TARGET TIME = 110; namely, 

A = 17,    F = 32,    K = 10,    P = 4, 

B = 14,    G = 13,    L = 10,    Q = 4, 

C = 10,    H =34,    M = 44,    R = 6. 

D = 70,    1=5,    N - 40, 

E = 39,    J = 21,    0 = 80, 

Step 2.  Simplification:  The only configuration of activities which 

can be readily replaced by an equivalent single activity is 

A, B, and C in parallel.  If the replacement activity is 

denoted by ABC, then the simplified project network consists 

of the single activity ABC and the original activities D, 

E, •.., R.  The initial duration distribution for ABC as a 

function of t is 

FABC(t) = V^V^V^ 

where P.(t) denotes a normal distribution with mean 17 and 

variance (17/17.5)225, Fft) denotes a normal distribution 

with mean 14 and variance (14/11)29, and F (t) denotes the 

distribution for a constant duration of 10. 

Step 3.  Decomposition:  The simplified project network is partitioned 

into two subnetworks in series.  The first subnetwork, SDBj, 

consists of the single activity ABC.  The second subnetwork, 

SUB2, consists of the activities D, E, ..., R. 



Table 2.  Optimal Activity Mean Durations for All Feasible TARGET TIME's 

TARGET TIME  135-D  134-D  128-D  124-D  114-D   113-D  108-D  106-D  105-D  104-D  100-D   96-D   92-D 

Range of D   0<p<l  0<p^6  0<D<4  0<p<10 0<p<^l  0<p^5  0<p<^2  0<p<l  0<p<^l  0<P£4  0<p<4  0<p^4  0<p<2 

Project Cost 1552.0 1552.4 1557.4 1563.9 1583.9 1586.1 1606.1 1614.6 1620.2 1626.2  1660.2  1702.8 1747.8 
When D=0 

Activity 

A 30 30 30 30-D 20 20-D 15 15 15-D 14-D 10 10 10 

B 14 14 14 14 14 14 14 14 14 14-D 10 10 10 

c 10 10 10 10 10 10 10 10 10 10 10 10 10 

D 70 70 70 70 70 70 70 70 70 70 70- D 66-D 62 

E 40 40 40 40 40-D 39 39- D 37- D 36 36 36 36 36 

F 32 32 32 32 32 32 32 32- D 31 31 31 31 31 

G 19 19-D 13 13 13 13 13 13 13 13 13 13 13 
i 

H 35-D 34 34 34 34 34 34 34 34 34 34- ■D 30-D 26 ho 
00 

I 5 5 5 5 5 5 5 5 5 5 5 5 5 1 

J 26 26 26-D 22 22-D 21 21- •D 19- •D 18 18 18 18 18 

K 10 10 10 10 10 10 10 10 10 10 10 10 10 

L 10 10 10 10 10 10 10 10 10 10 10 10 10 

M 44 44 44 44 44 44 44 44 44 44 44- •D 40-D 36 

N 40 40 40 40 40 40 40 40 40 40 40 40 40 

0 80 80 80 80 80 80 80- ■D 78- ■D 77 77 77- ■D 73-D 69-D 

P 4 4 4 4 4 4 4 4 4 4 4 4 4 

Q 
R 

4 4 4 4 4 4 4 4 4 4 4 4 4 

6 6 6 6 6 6 6 6 6 6 6 6 6-D 
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Figure 7.  Total Project Cost as a Function of TARGET TIME 



-30- 

Step 4.  Subnetwork Analysis:  The activity duration distributions for 

activities ABC,n, ,.., R are approximated by two-point discrete 

distributions with matching mean, variance, and third moment. 

Then the subnetwork duration distribution corresponding to 

these discrete activity duration distributions is determined 

for SUBx and SUB2 respectively. 

Step 5.  Synthesis:  Since SUBj and SUB2 are in series, their approximate 

duration distributions determined in Step 4 are combined using 

equation (8.1) to yield an approximate project completion time 

distribution.  The mean of this distribution is 131.77, so that 

the new TARGET TIME is 

New TARGET TIME = 110(110/131.77) = 91.83 

Return to Step 1. 

Step 1.  Deterministic Scheduling:  Using Table 2 the optimal activity 

mean durations for TARGET TIME = 91.83 are 

A = 10,    F = 31,    K = 10,    P = 4, 

B = 10,    G = 13,    L = 10,    Q = 4, 

C = 10,    H =26,    M = 36,    R = 5.83. 

D = 62.    1=5,    N = 40, 

E = 36,    J = 18,    0 = 68.83, 

Step 2.  Simplification:  The structure of the simplified project network 

never changes after the first Iteration.  Only the duration 

distribution of ABC needs to be redetermined. 

Step 3.  Decomposition:  The partitioning of the simplified project 

network never changes after the first iteration. 
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Step 4.  Subnetwork Analysis:  The new activity duration distributions 

are approximated by new two-point discrete distributions.  Then 

new approximate duration distributions for SUBi and SUB2 are 

determined. 

Step 5.  Synthesis:  The new approximate project mean completion time 

is 107.27, so that the new TARGET TIME is 

New TARGET TIME = 91.83(110/107.27) = 94.16. 

Return to Step 1. 

On the fifth iteration the project scheduling algorithm finds that the 

optimal activity mean durations for TARGET TIME = 93.88 have a corresponding 

project completion time distribution with mean 109.37.  If 109.37 was suffi- 

ciently close to the specified project deadline of 110, then these optimal 

activity mean durations would constitute the minimum cost project schedule. 
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10. Monitoring a Partially Completed Project 

Once the project has been scheduled and work begins, the project 

manager continually gains new information about activity durations which 

can be used to update the project's estimated completion time distribution. 

Suppose, for example, that after so many days have elapsed, activities A, 

B, C, and G in Figure 6 have been completed, activities D, E, and F have 

been in progress for 23 days, and activities J and 0 have been in progress 

for seven days. Then an updated estimate of the project completion time 

distribution can be obtained by repeating Steps 2-5 once with 

(i)  The random durations for activities A, B, C, and G replaced by 

the observed durations; 

(ii)  The duration distribution for each partially completed activity 

replaced by its conditional duration distribution given that it 

has been worked on for an observed number of days; and 

(iii)  The duration distributions for activities which have not been 

begun still equal to those determined in the minimum cost project 

schedule. 

Furthermore, if after completing Step 5 and examining the updated estimate of 

the project completion time distribution, the project manager could reschedule 

the uncompleted portion of the project by letting the project scheduling 

algorithm return to Step 1 and proceed again from there. 

If a substantial portion of the project has already been completed, the 

project network could be restated as in Figure 8 before returning to the steps 

in the project scheduling algorithm.  Such a restatement would not effect the 

updated project completion time distribution or any rescheduling but would be 

solely for the purpose of reducing the algorithm's computational effort and 

operating cost.  The dashed activities in Figure 8 represent the partially 
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completed activities.  These activities would not have their conditional 

duration distributions altered during any rescheduling if the project 

manager was reluctant to change the way an activity was being performed 

in the midst of that performance. 
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Figure 8.  Restatement of a Partially Completed Project. 
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11.  Concluding Remarks 

The new project scheduling procedure allows the project scheduler 

to specify 

(i)  the precedences among the project's activities, 

(ii)  the relationship between an activity's cost and its mean duration, 

(iii)  the manner in which an activity's actual duration varies about its 

mean duration, and 

(iv)  a deadline for either the project's mean completion time or a 

prescribed percentile of the project completion time distribution. 

In return the project scheduler receives 

(i)  a minimum cost project schedule which delineates each activity's 

mean duration time, 

(ii)  an estimate of the distribution of the project completion time, 

(iii)  information on the trade-off between the project's minimum cost 

and its specified deadline, and 

(iv)  a tool for monitoring the project's progress and, if need be, 

rescheduling. 

An exciting feature of this new project scheduling procedure is that 

it simultaneously incorporates the desire to minimize the project cost and 

the realization that an activity's duration is not necessarily a fixed 

quantity exactly equal to its prescribed duration but rather a random 

quantity varying about a prescribed duration.  No longer must the project 

scheduler either (i) choose a reasonable cost schedule which heuristically 

hedges against the randomness in the activities he quesses will be 

critical, or (ii) choose a reasonable schedule which should probably 

finish before the deadline and then guess where he can save money without 

disturbing the suspected completion time too much.  By considering both 
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cost and randomness together in one systematic algorithm, the new project 

scheduling procedure eliminates this guesswork. 

The authors wish to acknowledge their gratitude to the Office of Naval 

Research for the support of this research under contracts N00014-68-A-0140 

and N00014-76-C-0038. Several present and past members of the Institute of 

Statistics at Texas A&M University have also contributed to the development 

of this new project scheduling procedure and its computer implementation: 

E. Arseven (Lederle Laboratories), P. P. Biemer, T. C. Baker, Jr., C. S. 

Dunn, N. E. Fisher (Compucon Inc.), L. J. Ringer, and R. K. Spoeri (Bureau 

of the Census). 
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